PQM-1 Complements DAF-16 as a Key Transcriptional Regulator of DAF-2-Mediated Development and Longevity
نویسندگان
چکیده
Reduced insulin/IGF-1-like signaling (IIS) extends C. elegans lifespan by upregulating stress response (class I) and downregulating other (class II) genes through a mechanism that depends on the conserved transcription factor DAF-16/FOXO. By integrating genome-wide mRNA expression responsiveness to DAF-16 with genome-wide in vivo binding data for a compendium of transcription factors, we discovered that PQM-1 is the elusive transcriptional activator that directly controls development (class II) genes by binding to the DAF-16-associated element (DAE). DAF-16 directly regulates class I genes only, through the DAF-16-binding element (DBE). Loss of PQM-1 suppresses daf-2 longevity and further slows development. Surprisingly, the nuclear localization of PQM-1 and DAF-16 is controlled by IIS in opposite ways and was also found to be mutually antagonistic. We observe progressive loss of nuclear PQM-1 with age, explaining declining expression of PQM-1 targets. Together, our data suggest an elegant mechanism for balancing stress response and development.
منابع مشابه
Caenorhabditis elegans HCF-1 Functions in Longevity Maintenance as a DAF-16 Regulator
The transcription factor DAF-16/forkhead box O (FOXO) is a critical longevity determinant in diverse organisms, however the molecular basis of how its transcriptional activity is regulated remains largely unknown. We report that the Caenorhabditis elegans homolog of host cell factor 1 (HCF-1) represents a new longevity modulator and functions as a negative regulator of DAF-16. In C. elegans, hc...
متن کاملSMK-1, an Essential Regulator of DAF-16-Mediated Longevity
Insulin/IGF-1 signaling (IIS) regulates aging in worms, flies, and mice through a well-characterized, highly conserved core set of components. IIS also regulates early developmental decisions, the reproductive status of the animal, innate immunity, and stress-resistance functions. In C. elegans, the sole insulin/IGF-1 receptor, DAF-2, negatively regulates the FOXO transcription factor, DAF-16. ...
متن کاملDAF-16 and PQM-1: Partners in longevity
years ago it was discovered that loss of insulin/IGF-1-like signaling (IIS) – such as occurs in daf-2(mutants ts – dramatically extends longevity in the nematode C. elegans via the FOXO transcription factor DAF-16 [1-3]. Under favorable conditions, DAF-16 remains cytosolic and transcriptionally inactive[2-4]; under stress, it is driven into the nucleus, leading to both up-regulation and down-re...
متن کاملTranscriptional regulation of Caenorhabditis elegans FOXO/DAF-16 modulates lifespan
BACKGROUND Insulin/IGF-1 signaling plays a central role in longevity across phylogeny. In C. elegans, the forkhead box O (FOXO) transcription factor, DAF-16, is the primary target of insulin/IGF-1 signaling, and multiple isoforms of DAF-16 (a, b, and d/f) modulate lifespan, metabolism, dauer formation, and stress resistance. Thus far, across phylogeny modulation of mammalian FOXOs and DAF-16 ha...
متن کاملPDP-1 Links the TGF-β and IIS Pathways to Regulate Longevity, Development, and Metabolism
The insulin/IGF-1 signaling (IIS) pathway is a conserved regulator of longevity, development, and metabolism. In Caenorhabditis elegans IIS involves activation of DAF-2 (insulin/IGF-1 receptor tyrosine kinase), AGE-1 (PI 3-kinase), and additional downstream serine/threonine kinases that ultimately phosphorylate and negatively regulate the single FOXO transcription factor homolog DAF-16. Phospha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 154 شماره
صفحات -
تاریخ انتشار 2013